

K•STATE

NT returns over RT at varying yield reduction levels

Evaluated at 2024 NC Cash at Cornerstone Terminal, Colby on 1/16/2024 \$6.26 wheat, \$4.82 sorghum

NT/RT Assun	nption							No-Til	l Fallov	v Cost						
bu/bu		\$ 50	\$ 60	\$ 70	\$ 80	\$ 90	\$ 100	\$ 110	\$ 120	\$130	\$ 140	\$ 150	\$ 160	\$ 170	\$ 180	\$ 190
83/83	0%	33	23	13	3	-7	-17	-27	-37	-47	-57	-67	-77	-87	-97	-107
83/80	10%	44	34	24	14	4	-6	-16	-26	-36	-46	-56	-66	-76	-86	-96
83/77	20%	54	44	34	24	14	4	-6	-16	-26	-36	-46	-56	-66	-76	-86
83/74	30%	65	55	45	35	25	15	5	-5	-15	-25	-35	-45	-55	-65	-75
83/71	40%	76	66	56	46	36	26	16	6	-4	-14	-24	-34	-44	-54	-64
83/68	50%	87	77	67	57	47	37	27	17	7	-3	-13	-23	-33	-43	-53
83/64	60%	98	88	78	68	58	48	38	28	18	8	-2	-12	-22	-32	-42
83/61	70%	109	99	89	79	69	59	49	39	29	19	9	-1	-11	-21	-31
83/58	80%	119	109	99	89	79	69	59	49	39	29	19	9	-1	-11	-21
83/55	90%	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
83/52	100%	141	131	121	111	101	91	81	71	61	51	41	31	21	11	1

How did we get here?

- Fallow not originally part of cropping systems in the Great Plains
- Implementation of fallow stabilized crop yields in a wheat mono-culture vs. continuous cropping
- Mineralization of plant nutrients
- Opportunity to control weeds

5
K·STATE
Research and Extension

PUE – Precipitation Use Efficiency

2024 Crop Talk Webinar Serie

- The key to improved productivity and \$\$\$ in your pocket
- How much grain did we raise with the precipitation we received in the entire cropping system?

(lbs of grain per inch of precipitation)

- Two ways to improve PUE
 - Grow a crop in place of fallow (W-F to W-S-F)
 - Improve fallow efficiency (No-Till, more residue)

Knowledge ^{for}Life

K-STATE

K-STATE

Knowledge

Evaluation of Fallow Efficiency (Precipitation Storage Efficiency, PSE)

2024 Crop Talk Webinar Series

Fallow Accumulation = ΔASW

Fallow Efficiency = $\frac{\Delta ASW}{Fallow Precipition}$

 $Fallow Efficiency = \frac{Ending Soil Water - Beginning Soil Water}{Fallow Precipitation}$

Factors to Fallow Efficiency

Water is leaving the system in one of two ways

Weed Control

• Evaporative Losses

- Size of precipitation events
- Surface residue
- Tillage

The use of tillage during summerfallow can reduce water accumulation compared to no-till by as much as:

Effect of Tillage – W-F 1993-1998

	Fallow								
Fallow Method	Accumulation	Efficienc	iency						
	cm (in)	Percent	t						
No-Till	16.0 (6.30) a	23.8	а						
Reducted Till	14.0 (5.51) b	20.9	а						
Conventional Till	8.2 (3.23) c	12.1	b						
A	NOVA P>F								
Source of Variation									
Fallow Method	0.011	0.0114							
LSD 0.05	1.6 1.7	0.07							

Knowledge

^{for}Life

K·STATE

Research and Exter

Adapted from Nielsen et al., 2005.

2024 Crop Talk Webinar Series

K·STATE

Adapted from Baumhardt and Lascano, 1996.

2024 Crop Talk Webinar Series

Knowledge ^{for}Life

Crop Choice Effect on Surface	Effect of Crop Choice in Stacked						
Posiduos and Fallow Efficiency	Rotations on Fallow Efficiency						
Residues and Fallow Linclency							
1998-2008	2001-2006						
Fallow	Fallow						
Fallow Method	Fallow Method Accumulation Efficiency						
cm (in) Percent	cm (in) Percent						
W-S-F 83 (325) a 201 a	W-C-GS-F 8.3 (3.26) a 20.4 a						
W-SF-F 5.3 (2.08) b 12.5 b	W-C-SB-F 5.8 (2.27) b 14.1 b						
	W-C-SF-F 4.2 (1.64) c 10.0 c						
ANOVA P>F							
Source of Variation	ΔΝΟΛΑ Ρ>Ε						
Fallow Method 0.0452 0.0346	Source of Variation						
LSD 0.05 1.6 (1.14) 6.94	Fallow Method 0.0002 <0.0001						
^T Letters within a column represent differences at LSD (0.05)	LSD 0.05 1.6 (0.54) 2.53						
	[†] Letters within a column represent differences at LSD (0.05)						
Knowledge		Knowledge					
Research and Extension 2024 Crop Talk Webinar Series for Life	Research and Extension 2024 Crop Talk Webinar Series	^{for} Life					
Effects of Crop Sequence in 3 and	Available Soil Water at Sorghum Planting						
Encets of crop sequence in s and	Tribune, Kansas 1999-2008						
4 year rotations – 2009-2011							
	0						
Fallow							
Cropping System Accumulation Efficiency	2 -						
cm (in) Percent							
W-GS-C-F 8.3 (3.27) 17.7	$\hat{\mathbf{F}}$						
W-C-GS-F 8.0 (3.13) 17.5							
W-S-F 7.8 (3.07) 17.6	e b						
W-C-F 6.6 (2.61) 14.9							
<u>ANOVA F>F</u> Source of Variation							
Fallow Method 0 6941 0 8018	W-GS-F						
LSD 0.05	-O- W-C-GS-F						
[†] Letters within a column represent differences at LSD (0.05)							
	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00						
	ASW (in ft ⁻¹)						
K-STATE 2024 Crop Talk Wahiper Series Knowledge	K-STATE 2024 Gran Talk Webinar Sories	Knowledge					

Effects of Weed Control and Fallow Efficiency with Time (W-C-F)

Wheat Harvest to Row Crop Planting

	Previous Harvest to August Fallow			August Fallow to October Fallow			October Fallow to Row- Crop Planting			Previous Harvest to Row- Crop Planting				
Post Harvest Weed Control	Acc	umulati	on	Efficiency	Acc	umulatio	on	Efficiency	Accur	nulation	Efficiency	Acci	umulation	Efficiency
		cm (in)		Percent		cm (in)		Percent	cr	n (in)	Percent	(cm (in)	Percent
July	2.3	(0.91)	a^{\dagger}	25.2	1.2	(0.49)	а	19.4	5.7	(2.23)	41.3	8.8	(3.47) a	30.1
August	1.3	(0.53)	b	14.7	1.0	(0.41)	а	16.3	5.2	(2.03)	37.6	7.9	(3.09) b	26.9
Spring	1.3	(0.53)	b	14.6	-1.5	-(0.60)	b	-24.0	5.0	(1.95)	36.2	4.8	(1.89) c	16.4
							ANG	OVA P>F						
Source of Variation														
Weed Control	0.	0012		-	<0	0.0001		-	0.	1282	-	<0	.0001	-
LSD 0.05	0.6	(0.23)		-	0.6	(0.22)		-	-	-	-	0.8	0.30	-

Effects of Weed Control Timing During Fallow on Efficiency and Profile Water (W-C-F)

			Whea	t Harv	est	to Row	/ Crop	Pla	nting			
Table x. Effect of p	ost whe	eat harvest v	veed cont	rol timin Plar	g on nt Av	profoile ailable S	availabl oil Wat	e wat	er. SWR	EC-Tribune	2001-200	06
Post Harvest Weed Control	Augu	ust Fallow	Octob	October Fallow		Corn Planting		July I	July In-Season		Corn Harvest	
				-		C	m (in)					
July	10.4	(4.1) a [†]	10.8	(4.2)	а	15.9	(6.3)	а	13.8	(5.4) a	8.6	(3.4)
August	9.3	(3.7) b	9.1	(3.6)	b	14.8	(5.8)	а	13.2	(5.2) ab	8.4	(3.3)
Spring	9.5	(3.7) b	7.0	(2.8)	С	12.0	(4.7)	b	12.0	(4.7) b	8.4	(3.3)
				A		/A P>E						
Source												
Weed Control	0.0)823	<.0	001		<.0	001		0.0	518	0.7	7593
LSD 0.10	0.8	(0.3)	1.0	(0.4)		1.0	(0.4)		1.2	(0.5)		-
LSD 0.05	0.9	(0.4)	1.2	(0.5)		1.1	(0.5)		1.5	(0.6)		-
LSD 0.01	1.3	(0.5)	1.6	(0.6)		1.5	(0.6)		2.0	(0.8)		-

[†]Letters within a column represent differences at LSD (0.05)

2024 Crop Talk Webinar Series

Knowledge ^{for}Life

Efficiency from Row-Crop Harvest to Wheat Seeding

SWREC-Tribune 2001-2007

Time Period

Row-Crop Harvest to July Fallow

Row-Crop Harvet to Wheat Planting

July Fallow to Wheat Planting

Fallow efficiency during winter
in standing wheat stubble

Table 1. Reported values for overwinter precipitation storage efficiency (PSE) in wheat stubble throughout the central Great Plains.

Location	Wheat residue	Years	PSE %	Reference
Colby, KS	Undisturbed	25	78.5	Kuska and Mathews, 1956
	Undisturbed	4	77.0	
North Platte, NE	Undisturbed	4	98.9	Smika and Whitfield, 1966
	Incorporated		-15.4	
Akron, CO	Undisturbed	11	80	Smika et al., 1986
	Stubble-mulch		57	

Efficiency

Percent

28.8

-4.6

21.2

Where do we go from here?

- We know that there is being water left on the table
 - i.e. Row crop to wheat 20% x 15.5" = 12.4"
- We know that reducing soil water at planting will negatively impact subsequent crop yields
- Can we strike a balance?

Crazier Things Have Happened Weeds grown as residue....

W-F Delayed minimum tillage study. SWREC-Tribune, Kansas 1996-2001

	Previous Har	vest to Fall	Fall to \$	Spring	Spring to S	Previous H Seedi	
Fallow Method	Accumulation	Efficiency	Accumulation	Efficiency	Accumulation	Efficiency	Accumulation
	cm (in)	%	cm (in)	%	cm (in)	%	cm (in)
No-Till	8.0 (3.16) a [†]	27.6 a	3.0 (1.17) a	30.0 a	6.3 (2.47) b	19.1 ab	19.5 (7.66) a
Conservation Sweep Tillage	4.9 (1.94) b	14.5 b	1.1 (0.43) b	-0.6 b	4.4 (1.73) c	13.4 b	11.6 (4.58) c
Delayed Minimum Tillage	1.0 (0.40) c	-8.2 c	4.3 (1.70) a	45.5 a	8.0 (3.15) a	25.0 a	15.1 (5.93) b
			ANOV	A P>F			
Source of Variation							
Fallow Method	<0.0001	<0.0001	<0.0001	0.0003	0.0002	0.0012	<0.0001
LSD 0.05	1.6 (0.64)	9.5	1.4 (0.54)	21.9	1.6 (0.64)	6.0	1.7 (0.67)

It worked because the hit to soil water was early on, there was time to recover before seeding the next crop

Pea Development Basics	Winter vs. Spring Types					
 Indeterminate, cool season crop Growth Temperatures Optimum 17°C / 63°F Minimum 10°C / 50°F RUE reduced at <12°C / 54°F and PSII at < 15°C / 59°F Maximum 23°C / 73°F Damaging 28-32°C / 82-90°F Damage to Pollen and Ovule 36°C / 95°F 	 We're not talking about vernalization Winter types tend to be more photoperiod sensitive Lower temperatures begin the cold acclimation process Accumulation of solutes, changes in membrane lipid composition Higher proportion of biomass accumulation to below-ground 					
K-STATE 2024 Crop Talk Webinar Series Knowledge Jor Life	K-STATE 2024 Crop Talk Webinar Series Knowledge for Life					
 Winter vs. Spring Types - Flowering The <i>Hr</i> gene blocks floral initiation when the 	Pea Seed and Germination					
 days are short (13.5 hours, April 25 @ Colby) Recessive <i>If</i> gene results in plants that flower as early as the 8th node If you combine <i>Hr</i> with If you get a plant that should flower after last freeze, but hopefully early enough to beat the heat 	 Seed Size Spring Pea 1600-2500 Seeds/Lb Winter Pea 2200-3500 Seeds/Lb Seed doubles in volume in first 2 days of germination Requires 3x the moisture for germination compared to small grains Management Note: Plant at least ½" into moisture 					

Fig. 7, left. Mineralization of N in fallow following fallsown peas and winter wheat on four farms in Washington in early May. Fig. 8, above. Seed quality characteristics of new food quality winter peas (PS113000287W and PS11300289W) compared with spring peas Hampton and Carousel, winter pea Windham, and Austrian winter pea Common.

Fig. 9. Branching habit of spring pea (left) vs. winter pea (right). Photos by H. Nelson.

2024 Crop Talk Webinar Series

2024 Crop Talk Webinar Series

- 2010 Pilot Study
 - NWREC-Colby SWREC-Tribune
- 2011-2012 Additions
 - SWREC-Garden City

Knowledge ^{for}Life

Knowledge

USDA-ARS Bushland

Field Peas

- DS Admiral Yellow Field Pea
- Planted mid March @ 150-180 lbs ac⁻¹
- Four Treatments
 - Terminated 15 May and left as cover crop
 - Terminated 1 June and left as cover crop
 - Allowed to fully mature and left as cover crop
 - Harvested for grain early July
- 2011 Winter wheat failed at Tribune and emerged late at Colby (end of February / early March)
- 2012 Winter wheat was harvested at the Kansas locations

K·STATE

Knowledge ^{for}Life

2024 Crop Talk Webinar Series

Water U	Jse by Field SWR	wc		
				Peas effectively used 3.38" of water
	Water	Use to Date (Ir	nches)	
	15-May	1-Jun	1-Jul	
	Termination	Termination	Harvest /	
Peas	2.18	5.42	9.30	
Fallow	1.81	3.94	5.92	
Fallow Efficiency	23.3%	31.1%	25.9%	

Colby 2010 - Fallow Alternative Impacts on Available Soil Water at Wheat Planting

Table 2. Available soil water at wheat planting as affected by fallow method. NWREC-Colby 2010

	Available Soil Water at					
Fallow Method	Wheat Planting					
		cm (in)				
NT Fallow	30.6	(12.05)	а			
Peas - Green Fallow	27.1	(10.66)	b			
Safflower	18.8	(7.42)	С			
	<u>ANOVA P>F</u>					
Source of Variation						
Fallow Method	0	.001				
LSD 0.10	3.2	(1.26)				
1						

[†]Letters within a column represent differences at LSD (0.10)

2024 Crop Talk Webinar Series

Knowledge forLife

Tribune 2010 - Fallow Alternative Impacts on Available Soil Water at Wheat Planting

Table 1. Available soil water at wheat planting as affected by fallow method. SWREC-Tribune 2010 Preliminary Data

	Availat	ole Soil Wa	ter at
Fallow Method	Wheat Planting		g
		cm (in)	
NT Fallow	20.4	(8.02)	а
Peas Terminated 6/1	13.9	(5.47)	ab
Peas Harvested for Grain	13.9	(5.47)	ab
Peas Terminated 5/18	13.1	(5.16)	abc
Peas - Green Fallow	12.2	(4.79)	bc
Safflower	6.4	(2.50)	С

ANOVA P>F

1			
LSD 0.10	7.3	(2.87)	
Fallow Method	0.09	951	
Source of Variation			

[†]Letters within a column represent differences at LSD (0.10)

Tribune 2011 – Fallow Alternative Impacts on Available Soil Water at Wheat Planting

Table 3. Available soil water at wheat planting as affected by fallow method. SWREC-Tribune 2011 Preliminary Data

	Available	e Soil Water a	at Wheat
Fallow Method		Planting	
		cm (in)	
Peas Terminated 5/18	17.1	(6.72)	а
NT Fallow	16.7	(6.58)	а
Peas Terminated 6/1	14.4	(5.68)	ab
Peas Harvested for Grain	11.5	(4.53)	b
Peas - Green Fallow	10.2	(4.02)	b
Safflower	4.2	(1.67)	С

		 	_	-
Source of Variation				
Fallow Method	ł			

LSD 0.10 4.2 (1.6	SD 0.10	4.2	(1.67)
-------------------	---------	-----	--------

[†]Letters within a column represent differences at LSD (0.10)

orLife

0.0008

2012 Garden City Wheat Grain

 Yields

 Table x. Subsequent wheat grain yields as affected by fallow method.
 SWREC-Garden City 2012 Preliminary Data

Fallow Method	Wheat Grain Yie	ld
	kg/ha (bu/ac)	
NT Fallow	(30.16)	а
Peas Terminated 5/18	(20.23)	b
Peas Terminated 6/1	(17.57)	bc
Peas - Green Fallow	(16.93)	bc
Midas Peas for Grain	(14.29)	bc
Admiral Peas for Grain	(13.06)	С
Safflower	(4.14)	d

ANOVA P>F

Source of Variation Fallow Method

LSD 0.10

0.0003

[†]Letters within a column represent differences at LSD (0.10)

2024 Crop Talk Webinar Series

(6.47)

2012 Colby Wheat Grain Yields

Table x. Subsequent wheat grain yields as affected by fallow method. NWREC-Colby 2012 Preliminary Data

Fallow Method	Wheat Grain Yield		
	kg/ha (bu/ac)		
Peas Terminated 5/18	(56.59)	а	
NT Fallow	(51.22)	ab	
Peas Terminated 6/1	(49.19)	ab	
Peas Harvested for Grain	(44.50)	bc	
Peas - Green Fallow	(40.51)	С	
Safflower	(38.44)	С	
ANOV	'A P>F		
Source of Variation			
Fallow Method	0.0099		
LSD 0.10	(7.96)		

[†]Letters within a column represent differences at LSD (0.10)

2024 Crop Talk Webinar Series

Knowledge ^{for}Life

2012 Tribune Wheat Grain Yields

Table x. Subsequent wh	eat grain yields as affected by fallow method.
SWREC-Tribune 2012 P	reliminary Data
Fallow Method	Wheat Grain Yield

Fallow Method		Wheat Grain Heit	J	
		kg/ha (bu/ac)		
	NT Fallow	(6.61)	а	
	Peas Terminated 6/1	(6.22)	а	
	Peas - Green Fallow	(5.84)	а	
	Midas Peas for Grain	(5.51)	а	
	Peas Terminated 5/18	(5.29)	а	
	Safflower	(0.73)	b	

Fallow	Method
	INICUIUU

LSD 0.10

K·STATE

Knowledge

for Life

[†]Letters within a column represent differences at LSD (0.10)

0.0092

(3.62)

K-State Field Pea Research

Lucas Haag, Ph.D. Assistant Professor / Northwest Area Agronomist Northwest Research-Extension Center, Colby, Kansas

K-STATE

2024 Crop Talk Webinar Series

2024 Crop Talk Webinar Series

Field Pea VPT Locations

THD

Knowledge ^{for}Life

Trial Results and Field Pea Production Infowww.northwest.ksu.edu/agronomy

Top yield group across site-years

	2014	2015	2016	2017	2018	2019	
Location	Top Group Average Yield	Top Group Average Yield	Top Group Average Yield	Top Group Average Yield	Top Group Average Yield	Top Group Average Yield	Top Group Across Years
Rawlins	49.2	40.9	31.4	29.7	39.5	19.9	35.1
Thomas	28.2	30.6	33.8	39.3	26.5	48.7	34.5
Decatur	-	47.5	31.7	-	34.9	36.1	37.6
Gove	-	-	27.9	29.6	23.1	52.3	33.2
Scott	4.6	-	-	-	-	-	4.6
Sherman IRR	-	55.2	-	-	-	-	55.2
Rooks	-	-	-	-	-	31.1	31.1
Republic	-	-	-	-	-	12.9	12.9

Seeding Rate Summary

- K-State data would suggest our optimal seeding rate is likely higher than the 350,000 PLS/acre that we initially recommended to producers
- Current KSU recommendation is 365,000 PLS/acre

Seeding Rate Summary

Some of my thoughts on this from a crop physiologist perspective:

- Why might we need higher seeding rates than the Northern Plains?
 - As peas are moved south our conversion of yield components into actual grain yield is more limited
 - Fewer flowers converted into pods
 - Fewer seeds per pod
 - Therefore it possibly takes more plants/acre to maximize yield potential

Seed Quality

2024 Crop Talk Webinar Series

- Warm Germination is all that is required for seed to be certified
- Is that really enough information?
- What about farm saved seed?
- Proper handling is essential
 - Cold temps, overly dry seed, contact with steel
- Keep a sample back of what you plant

Knowledge ^{for}Life

Seed Quality - Testing

- Having warm germ, cold germ, and accelerated aging test ran provides you more information
- Once you start with a lab, stick with it
- Talk to your lab, while test procedures are standardized, philosophies and interpretation are not
- Other potential tests of interest
 - Disease Assay
 - Conductivity

(detects mechanical damage in seed coat)

Fungicide Seed Treatments

- Seed Treatments
 - Untreated
 - Obvious (BASF)
 - VibranceMaxx (Syngenta)
 - Apron Maxx RTA (Syngenta)
- Seeded at 350,000 PLS
- Three locations

C Knowledge ^{for}Life Knowledge **K**•STATE **K**·STATE 2024 Crop Talk Webinar Series 2024 Crop Talk Webinar Series

Knowledge

rLife

Winter Pea Variety x Seeding Rate - Colby 2018 2017 Yield Results 90.0 80.0 70.0 Thomas Rawlins Gove -- bu/ac --60.0 Untreated 19.9 28.4 26.2 b Grain Yield, bu ac-1 Obvious 28.5 19.6 28.4 а 50.0 19.0 29.4 VibranceMaxx 31.0 а Apron Maxx RTA 28.2 ab 40.0 ANOVA 30.0 P>F 0.5945 0.8694 0.049 20.0 LSD NS NS 2.18 10.0

2019 Winter Pea VPT at Colby

	VARNUM	Entrant	Entry	Class	YieldLb	YieldBu	
	WP1804	ProGene	Blaze	Yellow	5278	88.0	а
	WP1803	ProGene	7146	Yellow	5169	86.1	ab
	WP1908	ProGene	PRO_144-7211	Yellow	5092	84.9	abc
	WP1805	ProGene	Koyote	Yellow	4922	82.0	abcd
	WP1802	USDA-ARS	Windham	Yellow	4707	78.4	abcde
	WP1808	ProGene	7150	Green	4654	77.6	abcde
	WP1907	NS Seed	Mraz	Yellow	4522	75.4	bcde
	WP1902	USDA	PS11300289W	Yellow	4376	72.9	bcde
	WP1906	ProGene	Keystone	Green	4369	72.8	bcde
	WP1807	USDA-ARS	LaKota	Green	4341	72.4	bcde
	WP1905	USDA-ARS	PS1430NZ003W	Green	4300	71.7	cde
	WP1901	USDA-ARS	PS11300240W	Green	4279	71.3	de
	WP1903	USDA-ARS	PS12300049W	Green	3993	66.6	ef
	WP1904	USDA-ARS	PS12300058W	Yellow	3134	52.2	f
		P>F				0.00)39
		LSD (0.05)			810	13	.5
K.C	CATE		2024.0 7 11				k
Research a	I ALC		2024 Crop Talk	Webinar Series			

2021 K-State Winter Pea Variety Performance Test								
Variety	RAD	THD	Average					
Payback	35.8	40.0	37.9					
Koyote	36.2	38.7	37.5					
Blaze	32.8	41.0	36.9					
MS-20W3	31.7	42.1	36.9					
PRO_184-7148	33.5	40.1	36.8					
MS-20W2	27.5	39.3	33.4					
PRO_164-7117	27.3	38.5	32.9					
PRO_144-7211	31.5	34.1	32.8					
Goldenwood	28.2	36.5	32.3					
Windham	28.2	33.8	31.0					
PRO_154-7225	27.1	33.6	30.3					
PS1430NZ010W	24.8	34.1	29.5					
PS1430NZ003W	29.5	28.8	29.1					
LaKota		27.3	27.3					
MS-20W1	22.2	32.0	27.1					
PRO_152-7121	24.6	25.6	25.1					
Vail	24.0	21.3	22.6					
Specter	23.6	19.6	21.6					
PRO_184-7145	21.2	14.9	18.1					
Keystone	15.9	17.0	16.4					
	< 0.0001	< 0.0001						
2024 C	5.48 rop Talk Web	9.25 Dinar Series						

C

K-STATE Research and Extension

2019 USDA-PCHI Pulses in Rotation - Colby Pea Yields 90 85 a 79 ab 78 ab 77 ab 5000 79 a 80 74 b 70 63 a 4000 60 57 ab 0005 0000 Grain Yield, lbs ac⁻¹ Grain Yield, bu ac⁻¹ 55 b 52 b 52 b 49 b 30 20 1000 10 0 0 AACCONET Pro 144-7222 Winter DS Admiral toyote Earlystar spring N^{5^{tat} 2²¹⁰ ran^{ca} den⁴⁰⁰ winth^{arr} 4 2024 Crop Talk Webigad Series} Latota

Knowledge ^{for}Life

Knowledge

Spring Field Peas at the Colby Branch Experiment Station, 1915

Contact Info: LHaag@ksu.edu (785)462-6281 www.northwest.ksu.edu/agronomy Twitter @LucasAHaag 2024 Crop Talk Webinar Series

K·STATE

Knowledge

Spring Wheat in Northwest Kansas

Spring Wheat

- 1915-1950: Averaged less than ½ of WW
- 2001-2005: Averaged 49% of WW (28-56%)
- 2019: Averaged 43% of WW (36-55%)

	Colby, Kansas Spring Wheat and Winter Wheat, 2001-2005					
		Winter Wheat	Spring Wheat			
	Year	Mean of Top LSD	Maan			
		Group	Medn			
		Grain Yield	l, bu ac ⁻¹			
	2001	82.1	46.0			
	2002	43.2	12.1			
	2003	78.7	42.4			
	2004	60.1	30.3			
	2005	78.2	37.5			
	Average	68.5	33.7			
K-STATE Research and Extension	R. Aiken, 2008. unpublished data. 2024 Crop Talk Webinar Series					
and the second se						

	Cornersto	ne Ag Cash	Bids	
Notes	Basis Month	Basis	Cash Price	Futures Price
Corn				
IN-STORE BID	May 2024	-5	\$4.35	440-2
2024 NEW CROP BID	December 2024	-25	\$4.47	471-4
Hard Red Winter Wheat				
IN-STORE BID	May 2024	-70	\$5.23	593-2
NEW CROP 2024	July 2024	-50	\$5.32	581-6
Milo				\$0.77/b
IN-STORE BID	May 2024	0	\$4.40	440 2 Plus th
2024 NEW CROP BID	December 2024	-45	\$4.27	471-4 difference
Soybeans				fallow c
IN-STORE BID	May 2024	-125	\$10.57	1182-2
2024 NEW CROP BID	November 2024	-115	\$10.60	1175-0
Spring Wheat				
IN-STORE BID	May 2024	-65	\$6.00	664-4
	3/11/202	A Closing P	rices	
K.STATE	5/11/202		TICE5	Know

Spring Wheat

- So why would you do this?
 - Fallow alternative
 - Potential marketing opportunities for spring wheat
- Unknowns
 - Any economic return will be contingent on growing satisfactory quality, can we consistently do that in our environment?
- Be Aware
 - Different market class than HRWW, cannot be blended. However, white is a different story

Variety	Gra	Grain yield		Test V	Test Weight		Kernel weight		Plant Height	
	Mg ha	⁻¹ (bu ac ⁻¹)				m	g	ir	n	
LCS_Cannon	3.51	(56) a	11.8	59.8	а	30.7	abcd	28.8	bcd	
WB7589	2.99	(48) b	10.8	54.4	g	31.7	ab	26.0	cd	
WB9590	2.98	(47) b	11.2	55.0	fg	30.7	abc	27.3	bcd	
WB9479	2.90	(46) bc	11.0	56.3	def	30.2	bcde	26.8	cd	
LCS_Trigger	2.89	(46) bc	11.1	56.6	cdef	28.8	efg	28.8	bcd	
WB7202CLP	2.80	(45) bcd	11.4	55.5	defg	28.8	ef	28.3	bcd	
MS_Barracuda	2.75	(44) bcde	11.3	57.0	bcde	30.7	abcd	29.3	abc	
MS_Chevelle	2.71	(43) cde	10.9	56.1	defg	28.1	fgh	30.5	ab	
SY_Valda	2.71	(43) cde	11.4	58.4	ab	29.9	cde	26.8	cd	
LCS_Rebel	2.66	(42) cde	10.9	57.2	bcd	26.9	h	32.5	а	
WB97179	2.62	(42) def	11.3	55.2	efg	28.5	efgh	26.5	cd	
SY_Rustler	2.59	(41) def	11.4	58.5	ab	32.0	а	29.2	abc	
MS_Camaro	2.52	(40) efg	11.5	58.0	bc	29.7	cde	25.5	d	
WB7328	2.38	(38) fg	11.1	55.6	defg	31.0	abc	27.3	bcd	
MS_Stingray	2.37	(38) g	11.9	55.9	defg	29.1	def	32.5	а	
WB9668	2.30	(37) g	11.3	55.3	efg	27.3	gh	26.8	cd	
LSD = 0.05										
Variety	0.24	(3.7)	0.0	1.7		1.6		3.8		
			ANOVA P>F							
Effect										
Variety	<0.00	01	0.7816	<0.000	1	<0.0001	1	0.0058	3	

vledge

Knowledge

orLife

esearch and Exten

Harvested 7/31/2019, yields reported at 13.5% moisture

forLife

2020 Thomas County, Kansas Dryl	and Spring Wheat	Variety Performace Test
---------------------------------	------------------	-------------------------

Company	Variety	Grain Yield	Moisture	Test Weight	Protein	Headin	ng Date	Seeds/Lb
		bu/ac	%	bu/ac	%	D	DY	
WestBred	WB9590	24.3 a	12.1	54.0 abcd	17.94	6/3	defg	21551 efgh
Meridian Seeds	MS Ranchero	23.6 ab	13.1	52.9 cd	17.64	5/31	h	23366 abcd
Limagrain	LCS Cannon	23.6 ab	12.2	55.9 ab	17.51	6/1	gh	24445 ab
Meridian Seeds	MS Chevelle	23.5 ab	12.2	56.6 a	16.59	6/3	de	22541 cdefg
WestBred	WB9606	22.9 ab	12.2	54.6 abc	16.93	6/4	cd	23033 abcde
Meridian Seeds	MS Barracuda	22.6 ab	12.2	54.9 abc	17.71	6/2	efgh	21006 gh
WestBred	WB7202CL	22.5 ab	12.0	51.7 d	17.47	6/1	fgh	24846 a
Syngenta AgriPro	SY Ingmar	22.4 ab	12.8	55.8 ab	18.43	6/8	а	23389 abcd
WestBred	WB7696	21.9 abc	12.0	53.3 bcd	17.94	6/2	efgh	23120 abcde
WestBred	WB9719	21.7 abc	11.9	53.1 cd	17.68	6/5	bc	20499 h
WestBred	WB9479	21.6 abc	12.3	53.6 bcd	18.00	6/3	de	21321 fgh
Meridian Seeds	MS Camaro	21.2 abc	12.1	56.1 ab	17.66	6/4	cd	22089 cdefgh
Limagrain	LCS Trigger	21.0 abc	12.0	55.2 abc	17.75	6/5	bc	22016 cdefgh
Limagrain	LCS Rebel	20.6 bc	12.4	56.4 a	19.00	6/3	defg	21809 defgh
Syngenta AgriPro	SY Rustler	19.0 c	12.2	53.2 abcd	17.36	6/3	def	23653 abc
Syngenta AgriPro	SY Valda	18.8 c	13.4	52.2 cd	17.87	6/6	ab	22774 bcdef
	P>F	0.0404	0.0839	0.0165	0.1350	<0.0	0001	0.0002
	LSD (0.05)	3.2	NS	2.8	NS	1.5	727	1737

Bold yields represent the top yield group at LSD (0.05)

Spring wheat was seeded into fresh (2019 crop) dryland corn stalks

Seeded 3/12/2020 on 10" row spacing at 1.5M live seed/acre

130 lb/ac N applied as UAN topdress prior to joint

Different letters represent statistical differences at 1984 Cosp Talk Webinar Series

K-State Dryland Spring Wheat Variety Trial Summary, 2019-2022										
	Thomas	Thomas	Thomas	Rooks	Rooks					
	Dryland	Dryland	Dryland	Dryland	Dryland					
						2-Site-	3-Site-	4-Site-		
	2019	2020	2021	2021	2022	Year	Year	Year		
Variety						Average	Average	Average		
			Grain Yield,	bu ac ⁻¹						
LCS Cannon	55.9	23.6	53.8	50.7	21.0					
WB9590	47.4	24.3	54.9	44.8	20.0					
LCS Trigger	46.0	21.0	52.4	52.0	13.6					
WB9719	41.7	21.7	54.0	41.0	14.5					
LCS Rebel	42.4	20.6	49.4	40.6				38.3		
WB9606		22.9	49.6	48.2	11.1			32.9		
ND VitPro			47.0	38.0	14.5		33.2			
ND Prohberg			42.6	36.0	14.0		30.9			
WB7202CLP	44.6	22.5			24.3		30.5			
WB9707			49.4	42.2		45.8				
WB9479	46.1	21.6				33.9				
MS Chevelle	43.1	23.5				33.3				
MS Barracuda	43.8	22.6				33.2				
SY Valda	43.1	18.8				31.0				
MS Camaro	40.1	21.2				30.6				
SY Rustler	41.3	19.0				30.2				
AP Murdock			44.5							

46.4

5.8

Cowpeas

2024 Crop Talk Webipar Series 14.9

7.6

15.2

12.6

11.1

6.7

2.9

- Heat and drought tolerant
- Relatively low water use
- Short duration crop

37.7

38.0

47.7

36.7

43.5

< 0.0001

3.7

22.4

.

21.9

21.8

0.0404

3.2

 Somewhat unintentionally we have seen cowpeas succeed in NWKS at late planting dates

Knowledge ^{for}Life

AP509-2

SY Ingmar

WB7328

WB7589

LCS Heron

LCS Buster

LSD (0.05)

Site Average

LCS Dual

P>F

LCS Hammer AX

WB7696 WB9668

MS Ranchero MS Stingray

5-Site-Year

Average

46.0

42.9 42.9

39.6

Cowpea Evaluation in a Dryland Rotation

 Wheat-Sorghum-Fallow >>> Wheat-Sorghum-Cowpea

C

K·STATE

- Integrated into large-scale, long-term (1993) dryland rotation study at Tribune
- Cowpeas averaged 1030 lb/ac and plots were seeded back to wheat at optimum date

2024 Crop Talk Webinar Series

Knowledge ^{for}Life

Profile Water at Wheat Planting in 4 Year-Rotations K-State SWREC, Tribune, KS, 2008-2023

Inoculant and Nitrogen

• 2023 Colby

- Irrigated: 0, 30, 60, 90, 150 lb/ac, with and without inoculant
- Dryland: 0, 25, 50, 75, 100 lb/ac, with and without inoculant
- Observed no differences in yield or any other measured parameter

Cowpea Evaluation - 2023

- 30 lines form MAGIC collection
 - (8 parents, 22 lines)
 - Thanks to Lam Huynh
- 126 lines from UCR Minicore
 - Thanks to Tim Close
- 15 varieties, breeding lines, misc.
 - Thanks to Sally Jones Diamond, CSU and
 - María Muñoz Amatriaín, Universidad de León
- 171 Total

K·STATE

- Grown under dryland and irrigated, very limited notes, mostly seed increase
- 2024 More active effort, two locations

Camelina

- Oilseed crop in the brassica family
- Grown as early as 600 BC in the Rhine valley
- Important oil crop in Europe pre WWII
- Winter and Spring types Exist
- Short Season Crop: 70-100 days ٠
- Industrial (biodiesel and jet fuel) and human markets (high omega 3 fatty acid content)

Camelina - Management Planting Date: Winter: 9/5 - 10/5

Spring: 2/15 - 4/1

Figure 2. Camelina yield at early, mid, and late seeding dates in year 2013, 2014, and 2015, Agricultural Research Center-Hays; comparison is among planting dates within year. Within years, means followed by the same letter(s) are not significantly different at P>0.05.

K•STATE

ed yield, lb/a

Knowledge

^{for}Life

Winter Canola Variety Trials

Northwest Research-Extension Center, Colby, KS

Spring Oilseed Variety Trials

2015/16 Great Plains That Results								
Variety	50% bloom (d)	Yield (bu/a)	Yield (rank)					
KS4658	127	55.6	1					
Riley	119	52.7	4					
Safran	126	50.4	7					
KS4719**	129	48.8	12					
Wichita	124	38.6	35					
Sumner	121	31.8	36					
Mean	124	45.6						
LSD (0.05)	3	11.8						

Northwest Research-Extension Center, Colby, KS

(lb/acre)

	Year						
Variety	2003	2004	2005	2006			
Hyola 401 (check)	978	868	1,204	91			
High Yield B. napus	1,294	908	1,204	325			
Low Yield B. napus	431	137	183	28			
Camelina	1,370	289	1,034	93			
B. juncea	1,171	417	607				

• Limited by available water, stand establishment, and heat at reproductive stage

KANSAS STATE

2024 Crop Talk Webinar Series

Shifting Gears... Intensified Rotations

Four Year Rotations (1996-present)

- Wheat-Wheat-Sorghum-Fallow
- Wheat-Sorghum-Sorghum-Fallow
- Continuous Wheat
- All Continuous No-Till

KANSAS STATE

2024 Crop Talk Webinar Series

forLife

2024 Crop Talk Webinar Series

(STATE

2024 Crop Talk Webinar Series

Concluding Thoughts

- What is my profile water situation?
- What is my surface residue condition?
- Make decisions that will improve precipitation use efficiency
 - Good fallow management
 - No-till, residue, and weed control
 - System Intensification
 - Can we intensity with cash, forage, or green fallow (cover) crops
 - But efforts need to keep in mind "do no harm"
 - hits on subsequent crops reduce surface residues, etc.

Knowledge ^{for}Life

2024 Crop Talk Webinar Series

