

KANSAS STATE NIVEDC

Soil pH and nutrient management

- pH is easy to measure in the lab and reliable ٠
 - Concentration of H (Logarithmic scale)
- High pH- calcareous soils generally limit nutrient ٠ availability (particularly micros)
- Low pH and soluble aluminum can limit root growth and nutrient availability

KANSAS STATE

Soil pH trends vary substantially across KS

K·STATE

Selected high pH soil locations Soil pH by depth: 0-6 in vs 6-12 in

Selected high pH soil locations carbonate content (%) at 0-6 in depth

Can we neutralize calcium carbonate?

- S (oxidation) => H₂SO₄
- H₂SO₄ + CaCO₃ => CaSO₄ + H₂O + CO₂
- 1 lb of elemental S neutralize 3.1 lbs of CaCO₃
- 0-6" soil at 8% CaCO₃ = 160,000 lbs CaCO₃/acre (80 tons)
- Will need about 26 tons/acre of elemental S

High pH, calcareous soils and driving factors for Fe chlorosis

- High soil pH and the presence of calcium carbonate
- Other soil factors: salt accumulation, high nitrates
- Biotic and abiotic stress: wet soils, pest/disease damage etc.

KANSAS STATE

K·STATE

Iron deficiency chlorosis in high pH calcareous soils

KANSAS STATE

K·STATE

Stability of chelates with different pH

K-STATE Research and Extension

Chelated Fe application for grain sorghum

3 lbs in-furrow EDDHA Fe (6.0%)

K-STATE Research and Extension A. Obour, 2015 KANSAS STATE

Fe fertilizer sources and the need of targeted applications

KANSAS STATE

Effective Fe fertilizer sources, need targeted applications

K·STATE

K·STATE

High pH calcareous soils and chlorosis

- Iron fertilizer sources are not the same. Type of chelate is important, particularly on "extreme" high pH soils.
 - Plant availability and cost
- Opportunities for high return to investment
 - But "blanket" applications are ineffective and waste expensive fertilizer in areas with no crop response.
- Combination of management options should include variety selection

KANSAS STATE

Soil pH and other fertility considerations?

Phosphorus: effect of calcium carbonate on soil test P extraction methods

NH4-Oac (mg kg⁻¹)

Mehlich-3 exchangeable cations

- K, Mg, Na highly correlated between methods
- Strong pH dependence for Ca
- M3 over-estimated exchangeable Ca in high pH soils

Calcium test with Mehlich-3

- M3 Ca >> Ammonium Acetate Ca in high pH soils
- Soil pH of 7.3 identified as break point
- Should not interpret M3 Ca as "exchangeable" if pH >7.3
- Ca extracted from carbonates

KANSAS STATE

Variability of soil pH in the field

K-STATE Research and Extension * 0-6 in sampling depth, NW Kansas

KANSAS STATE

Average crop response to lime rates

Crop response and lime application in no-till

- Small yield increase, but shows across crops-years: the need to assess economic return multi-year.
- Surface lime increase soil pH only in the upper 3 in.
- For soils with neutral to alkaline subsoils, <u>surface</u> lime applications in no-till contributed to response for corn and soybean, and restored soil pH near the surface.
- Optimum soil pH near the soil surface can also improve other factors such as herbicide efficacy under no-till.

KANSAS STATE

Summary

- Soil pH can be highly variable in some fields
- Stratification can be significant for long term notill: may require different sampling depth
- pH can also affect soil test methods (particularly high pH)
 - Need to consider the most appropriate soil test method

KANSAS STATE

NIVERSIT

K·STATE

